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1. Summary 

It is  well known that  for  testing  a  simple  statistical 

hypothesis  against  a  simple  alternative  hypothesis  a  sequen- 

tial  probability  ratio  test  is  best in the  sense  that it 

requires on the  average,  under  both  hypotheses,  the  minimum 

number of observations.  This  is  usually  called  the  optimal 

property of a  sequential  probability  ratio  test. A similar 

optimal  property  is  defined  for  sequential  decision  procedures 

for  testing k statistical  hypotheses  and  its  connection  with 

Bayes  solutions  is  investigated. 

2. Definitions 

We shall  consider  the  problem of testing k simple  statis- 

tical  hypotheses Hi, H 2 ,  ..., Hk. Each  hypothesis  specifies 

a  probability  measure on a  Bore1  field of subsets  of  a  space 

X. The k measures  are  considered  as k possible  distributions 

over X. To  each  sample  point X in X a  decision  procedure 

assigns  a  pair of integers  (m,  i).  This  means  that  when x is 
the  sample  sequence  the  procedure  observes  the  first m coordi- 

nates  of x and  decides  that Hi is  the  true  hypothesis. To 
each  decision  procedure  we  shall  assign a vector  v of its 

expected  sample  sizes  and  error  probabilities.  Since  the 

properties  of  decision  procedures we shall  consider  are  de- 

fined  in  terms of their  expected  sample  sizes  and  error  proba- 

bilities, we need not  distinguish  two  procedures  having  the 

same  vector of these  quantities.  Therefore,  a  decision  pro- 

cedure  will  be  identified  with  the  corresponding  vector. We 
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shall  denote  by n(v) the  vector  whose  i-th  component  n.(v)  is 

the  expected  sample  size of the  procedure  v  under  the  hypothe- 
1 

L e t v  be a  class  of  decision  procedures.  For  example 

Vmay be  the  class  of  all  sequential  procedures  with  finite 

expected  sample  sizes, or the  class of all  procedures  which 

take  at  most  m  observations,  etc.  The  analogue of the  opti- 

mal  property of a  sequential  probability  ratio  test  is  now 

stated  as  follows: 

( p l ) :  A procedure  v* i n V  has  property ( P I )  if for any 

v in V aij(v)c a i j  (v*)  for  all  i#j  imply 

ni (v)  n . tv*) . for  all i. 

Let (P2) be  defined  as  follows: 
1 

( p , )  : A procedure  v*  in 'V has  property ( P 2 )  if  for  any 

vector  g  of  a  priori  probability  there  is  a  matrix 

,!,with gij 2 - o andRii = o such  that R(q,l?,v*)( - 

R(g, $, v)  for  all  v  in v. Note  that (P2) is 

stronger  than  the  property  of  a  Bayes  solution 

in  which  both q and L are  fixed. 
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3 .  The  Main  Result 

From  the  statements of (PI) and (P2) it is  easily  seen 

that (p2) implies (PI). We  give  a  sufficient  condition  under 

which a vector  satisfying (Pl) also  satisfies (P2). 

Theorem 1. In order  for  a  vector v* inVwith property 

(PI) to  satisfy (P2) it is sufficient  that 

1) V i s  a  convex  subset  of  the  corresponding  vector 

space,  and 

2 )  there  exists  a  vector v' in V such  that aij(vO) < 

aij (v*)  for  all  i and j, ifj. 

Note  that  condition 1) is  satisfied  in  most  of  the  statistical 

decision  problems  if  we  include  randomized  decision  procedures. 

Condition 2 )  is  satisfied  for  example i f V  contains  all 

sequential  procedures  with  finite  expected  sample  sizes.  The 

proof  is  based on the  following  theorem on concave  program- 

mings C1-j. 

Let f (x) = < f l  (x), . . . , fm(X) > and  g(X) = < g l  (x), . . ., 
gn(X) > be  two  vector  valued  functions  defined on a  convex 

subset X of  Euclidean  space.  We  shall  say  that  a  vector X* 

in X is  a  solution of the  "uniform  maximum  problem" if 

g(X*)r o and  for  any x in X, g ( x )  2 o implies f(x)& - f(x*). 

Theorem 2. Assume  that  functions  f (x) and  g(x)  are  con- 
cave on X, and  g(x)> o for  some x in X. Then  a  vector x* is 
a  solution  to  the  uniform  maximum  problem if and  only if, the 

following  conditions  hold:  for  all z > o ,  there  exists  a 
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vector y* = y * ( z ) ~  o such  that for Lagrangian  expression - 

hold  for  all x in X and y 2 0 .  - 

Proof of theorem 1. Note  that  a  vector  v*  with 

property (PI) is  a  solution  to  the  uniform  maximum  problem 

with X replaced by VI f (x) by -n(v) I and g (x) by a (v*) -a ( V I .  

(Here  we  consider  a(v)  and i!- as k ( k - 1 )  dimensional  vectors 

of their  off  diagonal  elements.)  Therefore,  by  theorem 2 

the  conditions 1) and 2) imply  the  existance  of k* o 

for  each  g > o such  that  the  pair (v*, f i )  is  a  saddle-point 

of  the  corresponding  Lagrangian  form. It then  follows  that 

C.g.n. (v*) + C Q*ijaij(v*) 5 - ~ . g . n .  (v) + zilj I* 

- 

1 1 1  iIj 1 1 1  i j ai j (VI 

i#j  i#j 

for  all  v  in V. Setting .l. = (1 ) where .& ij ij = Q*ij/gi 

we  see  that  v*  satisfies  (P2). 

Remark.  The  property ( P 2 )  seems to be  easier  to  check  than 

( P l )  in  most  of  the  decision  problems. 
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